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Group 6 Metallooxaziridines: Preparation, 
Characterization, and Reaction with Cyclohexanone 

Sir: 

We have previously demonstrated that peroxo complexes 
of group 6 metals catalyze oxidation of cyclic ketones by hy­
drogen peroxide.1 This reaction represents the first example 
of an oxygen transfer from molybdenum and tungsten peroxo 
complexes2 to ketones. The peroxo complexes are reduced to 
the corresponding oxo complexes via metallozonide 1 (eq 1). 
Reaction of hydrogen peroxide with the oxo complex regen­
erates the peroxo complex and completes the catalytic cycle3 

(eq 2). 

»/ O 
M x O 

°c5 
C=O 

0 + M=0 (D 

M=O + H 2 O 2 4 / I + H2° (2) 

We have attempted to generalize the results by postulating 
that oxo complexes may react with different HX-YH species 
to form three-member metallocycles 2 (eq 3). In the case of 
N-substituted hydroxylamines, the metallocycles 2 (X = RN; 

M=O + HX-YH + H2O (3) 

Y = O) were expected to transfer the R-N moiety to cyclic 
ketones and form either lactams in analogy to eq 1 or behave 
as "nitrenoids" and produce derivatives of a-amino ketones. 

The metallocycles 2 stabilized by picolinato or pyridine-
2,6-dicarboxylato ligands (subsequently called metallooxa­
ziridines)4 were unknown. Therefore, our first objective was 
to demonstrate that they could be prepared. We are now 
pleased to report the successful preparation and character­
ization of complexes containing one or two three-membered 
metallocycles per metal consisting of the group 6 metal, oxy­
gen, and nitrogen. These complexes are prepared by a reaction 
of N-substituted hydroxylamines with either dioxo complexes 
in analogy to eq 3 or with peroxo complexes stabilized by di-
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Table 1. Spectral Properties of Metallooxaziridine Complexes0 

complex 

3 
4 
5 
6 
7 
pyridine-2,6-dicarboxylic acid 
8 

9 

picolinic acid 
PhNHOH 
PhNHOH-HCl 

Yield, 
% 

94.0 
93.6 

63.2 

C(I) 

148.3 
146.7 

148.0 

149.4 

151.9 
139.1 

pher 
C(2,6) 

116.6 
115.8 

116.2 

116.9 

113.0 
129.9 

13C chemical shifts, ppm 
iyl ring 

C(3,5) 

128.6 
128.3 

128,2 

129.4 

128.3 
129.9 

C(4) 

126.4 
126.0 

124.5 

125.2 

125.5 

119.3 
122.6 

pyridine ring 
C(2) C(4) 

141.4 

138.8 

148.9 

148.5 
145.7 
147.8 
149.7 
146.1 
140.2 
148.3 

149.4 

142.1 

IR, crn" 
C=O 

1710, 1690 
1710, 1690 
1710, 1685 
1705, 1685 
1715, 1705 

b 
1685 

1670, 1640 

b 

i 

M=O 

950 
957 
957 
982 
975 

973 

938 

" All of the complexes gave satisfactory and complete elemental analysis as well as 1H NMR. * Broad, not well-defined peak. 

or tridentate ligands. In the second route the required oxo 
complex is formed as a transient species owing to the reduction 
of the peroxo complex by the N-substituted hydroxylamine (eq 
4). Therefore, at least 2 mol of hydroxylamine are needed for 
every peroxo moiety present in the peroxo complex. 

+ RNHOH- -M=O + RN=O + H O I 4) 

Thus, crystalline /Y-phenylhydroxylamine (10.10 g, 92.6 
mmol) was added at 0 0C to a stirred mixture of hexamethyl-
phosphoric triamide (HMPT) (17.05 g, 95.1 mmol), peroxo 
complex 3 (10.06 g, 30.9 mmol), and acetonitrile (300 mL). 

.xc-o 

<v2H C-0T o 

3 M = Mo, L = H O , X = O 

£ M = Mo, L = HMPT, X = PhN 

5_ M = Mo, L = Py, X = PhN 

6_ M = W, L = HMPT, X = O 

1_ M = W, L = HMPT, X = PhN 

After 3 h partial evaporation of the solvent and treatment of 
the residue with ether yielded 16.29 g (94%) of metallooxa­
ziridine 4. Anal. Calcd: C, 40.50; H, 4.66; Mo, 17.03; N, 12.43; 
P, 5.50. Found: C, 40.58; H, 4.51; Mo, 17.15; N, 12.45; P. 5.59. 
The same compound has been prepared by the reaction of 
dioxo(pyridine-2,6-dicarboxylato)(HMPT)molybdenum(VI)5 

(0.254 g, 0.484 mmol) with /V-phenylhydroxylamine (0.072 
g, 0.66 mmol) in acetonitrile (4 mL) at room temperature. 

A solution of this complex in acetontrile shows no conduc­
tivity suggesting a covalent complex. There is no evidence of 
either OH or NH bands in the IR spectra.6 Comparison of the 
IR spectra (shape and position of both C = O and Mo=O 
bands) and 13C NMR chemical shifts7 of mainly C(4) of the 
pyridine ring in 3 and 4 (Table I) strongly suggests that the 
bonding of the pyridine-2,6-dicarboxylato and oxo ligands in 
peroxo complex 32 and metallooxaziridine 4 are analogous. 
Then the position of the metallooxaziridine ring in 4 should 
correspond to that of the peroxo moiety in 3. This close simi­
larity between 3 and 4 is proven by preliminary single-crystal 
X-ray data.8 The key parameters of the metallooxaziridine 

ring9 are as follows: Mo-N, 2.05 (2), Mo-O, 1.95 (2), and 
N-0,1.45 (3) A. As in 3 where the O-O distance corresponds 
to that in peroxides2 the N-O distance in 4 is in agreement with 
that in hydroxylamine (1.47 A).10 

Catalytic activity of peroxo complexes of the type 3 is 
drastically affected by the lability of the ligand L.1' Therefore, 
preparation of metallooxaziridines with ligands more labile 
than HMPT was desirable. This objective can be accomplished 
by a reaction of peroxo complex 3 with at least 3 mol of N-
phenylhydroxylamine in acetonitrile. A yellow precipitate of 
unknown structure is formed which can be easily converted to 
4 or 5 by treatment with HMPT or pyridine. Similar analogues 
of 4 are formed when the yellow precipitate is treated with 
other oxygen or nitrogen ligands such as DMF, Me2SO, and 
alcohols in organic solvents. 

Tungsten metallooxaziridines of the type 7 can be prepared 
from tungsten peroxo complexes2 in analogy to the chemistry 
described for molybdenum. Again, zero conductivity in 
CH3CN, no presence of OH or NH bands in IR spectra, and 
the similarity of IR, 1H NMR, and 13C NMR of 4, 6, and 7 
(Table I) clearly suggest that the structures of molybdenum 
and tungsten metallooxaziridines are analogous.12 

In an attempt to make the analogy between peroxo com­
plexes and metallooxaziridines complete and possibly find a 
more reactive species, complexes containing two metallooxa­
ziridines per molybdenum (spirometallooxaziridines) were 
synthesized. Spirometallooxaziridines, so far, could be pre­
pared only from the corresponding peroxo complexes since the 
required trioxo complexes are unstable and cannot be isolated. 
Thus, reaction of peroxo complex 8 with at least 4 mol of N-
phenylhydroxylamine in acetonitrile at room temperature 
yields metallooxaziridine 9.13C NMR of 9 (Table I) leads us 

H3O P h -

I/ 
- M d - ' 

'Pv 

OH 

s P h 

to the assumption that the bonding of the PhNO moiety in 9 
is similar to that in 4 and that the bonding of the pyridine ring 
of picolinic acid in 9 corresponds to that in 8. However, the 
structural similarity of 8 and 9 cannot be complete since 
complex 9 exhibits zero conductivity in Me2SO while peroxo 
complex 8 is a two-ion conductor.2 Therefore, covalent nonionic 
structure 9 with picolinic acid as a neutral bidentate ligand is 
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preferred for the spirometallooxaziridine. 
Reaction of either 3 or the corresponding dioxo complex with 

either A'-methylhydroxylamine or benzohydroxamic acid so 
far has not yielded pure metallooxaziridine complexes.13 

The metallooxaziridines do behave as "nitrenoids". This is 
suggested by thermal decomposition of 4 to azobenzene and 
by the formation of a mixture of 2-(A/-phenyl)iminocyclo-
hexanone and azobenzene when 4 is treated with cyclohexa-
none in chlorobenzene at 80 0 C. The scope and mechanism of 
the reaction of metallooxaziridines of the type 4 containing 
ligands more labile than HMPT or spirometallooxaziridine 
9 with ketones, esters, and nitriles is under investigation and 
will be reported in the future. 
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Amino-Substituted Sulfonium Salts. 
Synthesis and Stereochemistry 

Sir: 

Amino-substituted sulfonium cations, [(R2N)XSF3_X] + (x 
= 1,2, 3), are isoelectronic with aminophosphines and, con­
sequently, their stereochemistry, reactivity, and ligand be­
havior are of significant potential interest.1 

We find that the syntheses of the [Me2NSF2]+ (1) and 
[(Me2N)2SF]+ (2) cations can be accomplished in high yields 
by treatment of the appropriate fluorosulfurane with a fluoride 
ion acceptor such as BF3, PF5, or AsF5 in SO2 solutions at —60 
t o - 6 5 0C: 

( M e 2 N ) x S F 4 - , + MF„ 

SO2 

- H - [ ( M e 2 N ) x S F 3 - J + [ M F n + 1 ] - (1) 

This is a similar approach to that used2 for the synthesis of 
[SF3]+ [BF 4 ] - . However, since the fluorosulfurane, (Me2-
N)3SF, is unknown it was necessary to develop a novel syn­
thesis for the completely amino-substituted cation, [(Me2-
N) 3 S] + (3). After several unsuccessful attempts to prepare the 
latter by treating 1 or 2 with dimethylamide anion, we dis­
covered that the reaction of SF4 with B(NMe2)3 affords high 
yields of 3 as its tetrafluoroborate salt: 

SF4 -I- (Me2N)3B -» [(Me2N)3S] + [BF 4 ] - (2) 

Typically, an equimolar mixture of SF4 and (Me2N)3B in SO2 

solution is allowed to warm slowly from —196 to +10 0 C. 
Removal of the SO2 and trace quantities of volatiles in vacuo 
produces white, solid [(Me2N)3S] + [BF4]- , mp 110 0 C dec.3 

The reaction of SF4 and (Me2N)3B can be followed by NMR 
spectroscopy. Immediately after warming to —60 0C, 1H peaks 
corresponding to 1 (triplet,4 5 3.18, JFSNCH = 7.5 Hz), 2 
(doublet, 5 2.95, JFSNCH = 7.0 Hz), and 3 (singlet, 0 2.55) and 
(Me2N)3B are clearly discernible. The resonances corre­
sponding to 1, 2, and (Me2N)3B decrease with time and that 
of 3 increases until, after 20 min at ambient temperature, all 
that remains is the singlet resonance of 3. 19F spectra5 taken 
in the early stages of the reaction confirm the presence OfSF3

+ 

(singlet, —19 ppm), 1 (septet, —16.0 ppm, JFSNCH = 7.5 Hz), 
and 2 (multiplet, +15.6 ppm, /FSNCH = 7.0 Hz) and, in ad­
dition, exhibit four poorly resolved "quartet" resonances which 
we attribute to BF 4

- (143.5 ppm, J u B F = 2 Hz), [Me 2NBF 3] -

(153ppm,J i i B F = 20Hz), [(Me2N)2BF2]" (155 ppm, J n B F 

= 18 Hz), and [(Me2N)3BF]-(156 ppm, J n 8 F = 17 Hz).6 As 
time elapses the resonance due to B F 4

- grows at the expense 
of the other three. To accommodate the foregoing observations 
we postulate that the initial step in the reaction is F - ab­
straction by (Me2N)3B to form [(Me2N)3BF]" and SF 3

+ , the 
latter undergoing F - / M e 2 N " exchange with either (Me2N)3B 
or [(Me 2N) xBF 4-*] - . In support of this postulate we find that 
(a) the AsFg - salts of SF 3

+ , 1, and 2 undergo rapid reaction 
with (Me2N)3B to afford 3, and (b) the sulfurane (Me2N)2SF2 

does not react with (Me2N)3B in this temperature range. 

The stereochemistry of aminosulfonium cations has been 
investigated by dynamic NMR spectroscopy. For example, 
below —30 0 C the 1H spectrum of 1 consists of two overlapping 
triplets which we attribute to two Me environments (Me3, <5 
3.06, JFSNCH, = 9.5 Hz; Meb, 6 2.98, JFSNCHb = 5.5 Hz).7 

This deduction is confirmed by the presence of two singlets in 
the 13C spectrum (Me3, 41.2, and Meb, 36.7 ppm).5 '7 Under 
the same conditions the 19F spectrum comprises a 16-line 
spectrum which is due to the coupling of the two Me groups 
to two equivalent F ligands. Taken collectively, the low-tem­
perature NMR data establish structure 4 for 1, and thereby 
demonstrate that aminosulfonium cations and aminophos­
phines are isosteric.8 Upon warming to —15 0 C the 1H spec-
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